A Bilinear Model for Sparse Coding

نویسندگان

  • David B. Grimes
  • Rajesh P. N. Rao
چکیده

Recent algorithms for sparse coding and independent component analysis (ICA) have demonstrated how localized features can be learned from natural images. However, these approaches do not take image transformations into account. As a result, they produce image codes that are redundant because the same feature is learned at multiple locations. We describe an algorithm for sparse coding based on a bilinear generative model of images. By explicitly modeling the interaction between image features and their transformations, the bilinear approach helps reduce redundancy in the image code and provides a basis for transformationinvariant vision. We present results demonstrating bilinear sparse coding of natural images. We also explore an extension of the model that can capture spatial relationships between the independent features of an object, thereby providing a new framework for parts-based object recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Sparse Coding for Invariant Vision

Recent algorithms for sparse coding and independent component analysis (ICA) have demonstrated how localized features can be learned from natural images. However, these approaches do not take image transformations into account. We describe an unsupervised algorithm for learning both localized features and their transformations directly from images using a sparse bilinear generative model. We sh...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

Perception of Transformation-Invariance in the Visual Pathway

Visual perception of transformation invariance, such as translation, rotation and scaling, is one of the important functions of processing visual information in the Brain. To simulate this perception property, we propose a computational model for perception of transformation. First, we briefly introduce the transformation-invariant basis functions learned from natural scenes using Independent C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002